

The K-Nearest Neighbor Attractor-based Neural Network and the
Optimal Linear Discriminatory Filter Classifier

Gerald J. Dobeck

Naval Surface Warfare Center Panama City
Panama City, Florida 32407

Abstract ─ The K-Nearest Neighbor Attractor-based Neural

Network and the Optimal Linear Discriminatory Filter Classifier
are feature-based classifiers that are trained via supervised
learning using a training set of feature vectors. They were
developed by the author and successfully used in several
applications where they were "and-ed." Results using these
classifiers have been published, but comprehensive descriptions of
them have not appeared in the literature. This paper presents
their detailed descriptions.

I. INTRODUCTION

The K-Nearest Neighbor Attractor-based Neural Network
(KNNANN) is a probabilistic-type of neural network. It was
developed based on concepts taken from the Probabilistic
Neural Network (PNN [1]), Reduced Coulomb Energy neural
network (RCE [2]), and the K-Nearest Neighbor classifier
(KNN [2]). It estimates the joint posteriori probability,
Prob(class | feature vector), from training data. Specifically,
the KNNANN training process produces a joint posteriori
histogram of the training set under the constraint of equally
likely classes even if the training set is unbalanced (i.e., each
class has a different number of training samples.)

The Optimal Linear Discriminatory Filter Classifier
(ODFC) is a classifier that uses a bank of linear classifiers that
are referred to as linear discriminatory filters. The coefficients
of the linear classifiers are found by solving a generalized
eigenvalue problem. There are generic similarities between
ODFC optimization approach and the one described in [3].
The outputs of the linear classifiers are combined to produce an
overall statistic that is used to determine class membership.

These two classifiers are complementary in how they
construct decision boundaries in feature space. The KNNANN
uses multiple hyperspheres (also referred to as attractors) to
define class boundaries, and the ODFC uses multiple
hyperplanes. As such they have been combined by the author
using various "anding" schemes, which resulted in overall
performance that was much better than the performance of
either one alone.

A desirable attribute of both classifiers is that their training
processes are not iterative and are computationally very fast.
This permits the designer to efficiently evaluate many feature
subsets from large set of candidate features and select the
subset that performs "best" or "good enough," thereby
overcoming Bellman's well-known curse of dimensionality [4].

These classifiers were developed by the author several
years ago and used in several applications [5-8]. In section III
the KNNANN is described in detail, and in section IV the
ODFC is described.

II. FEATURE VECTOR NORMALIZATION

 Both classifiers perform better if feature vectors are
normalized. The normalization process is described in this
section. Define

x(k) = k-th feature vector from the training set. (1)
class(k) = class of x(k) ∈ {1, 2, …, Nc}

where
Nc = Number of classes
k = 1, 2, … N
N = Number of training feature vectors
M(i) = Number of training vectors belonging to class i

 Let xj(k) denote the j-th feature component of the k-th
feature vector. The normalized feature component is given by

xj(k; "normalized") = (2)
 [(xj(k; "original") - bias(j)] / scale(j)

where
w(k) = sample weights (3)
 = 1 / M(class(k)) for k = 1, 2, ... N

 N
W = ∑ w(k) (4)
 k=1

 N
bias(j) = (1/W) ∑ w(k) xj(k) (5)
 k=1

 N
scale(j) = (1/W) ∑ w(k) | xj(k) - bias(j) | (6)
 k=1

 Regarding this normalization process: (1) scale and bias
are computed using only the training data and must be saved
for application to any new feature vector, (2) the use of w(k)
imposes an equally likely class probability assumption. This
prevents any class with a much greater number of samples than
the other classes from dominating the calculations. For the
remainder of the paper, the feature vectors x(k) are assumed to
be normalized.
 As an aside, in some applications it is sometimes
beneficial to base the determination of the bias and scale on
samples from one key class (or a few key classes) rather than
all classes as presented here.

1-4244-0115-1/06/$20.00 ©2006 IEEE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 SEP 2006

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
The K-Nearest Neighbor Attractor-based Neural Network and the
Optimal Linear Discriminatory Filter Classifier

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Surface Warfare Center Panama City Panama City, Florida 32407

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002006. Proceedings of the MTS/IEEE OCEANS 2006 Boston Conference and Exhibition
Held in Boston, Massachusetts on September 15-21, 2006, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

III. KNNANN

 The first stage of the KNNANN Training algorithm
determines the number of attractors (hyperspheres) that will
contain all the feature vectors from training set, their center
locations in feature space, and their associated radii. Let

c(L) = center of attractor L (7)
r(L) = radius of attractor L

 The second stage of the KNNANN Training algorithm
determines p(i, L), the estimated probability that an object
belongs to class i given that its feature vector is contained in
attractor L.
 The KNNANN Training algorithm uses some selectable
design parameters: α, β, and γ(i):

α = nearest neighbor factor (8)
where

0 < α < 1
Recommend: α = 0.5

β = radius dither parameter (9)

where
0 ≤ β < 0.5
Recommend: β = 0.005

γ(i) = removal factor for i = 1, 2, ... Nc (10)

where
0 ≤ γ(i) ≤ 1
Recommend: γ(i) = 0.0 if M(i) is small
 = 0.5 if M(i) is of modest size
 = 1.0 if M(i) is large

 The selection and usage of these parameters will be
discussed later, but first the training algorithm is presented.
 The KNNANN uses a vector norm, which will be denoted
as norm(u) for the norm of vector u. The standard L2 norm is
recommended. Other norms can be used to derive different
variants of the KNNANN.

KNNANN Training Algorithm

1. Initialization:
 Set L =0
 kref = 0
 flag(k) = 0 for k = 1, 2, ... N
2. Set kref = kref + 1
 If kref > N
 Then: Go to step 12
 Else: If flag(kref) = 0
 Then: Go to step 3
 Else: Go to step 2
3. Set L = L+1
 c(L) = center of attractor
 = x(kref)

4. Set d(k) = norm(x(k) - c(L)) and
 v(k) = [M(class(k))]-1/2 for k = 1, 2, ... N.
5. Sort d(k) from smallest to largest. Let km be the sorted

index list; i.e., d(k1) ≤ d(k2) ≤ ...≤ d(kN).
6. Find the smallest M such that
 M
 ∑ v(km) ≥ α

 m=1
7. Set r(L) = radius of the attractor
 = (1+ β) d(kM)
8. Set Q = 0
 q(i) = 0 for i = 1, 2, ... Nc.
9. For m = 1, 2, ... N
 Set k = km
 If d(k) ≤ r(L),
 Then: w = 1 / M(class(k))
 Q = Q + w
 q(class(k)) = q(class(k)) + w
 If d(k) ≤ γ(class(k)) r(L)
 Then: flag(k) = 1
 Else: continue
 Else: Go to step 10.
 End of For m loop
10. For i = 1, 2, ... Nc
 p(i, L) = q(i) / Q
 End of For i loop
11. Return to step 2
12. Training is complete.

 When training is completed, L attractors have been
identified with radii r(j), centers c(j), and estimated class
probabilities p(i, j) for i = 1, 2, ... Nc and j = 1, 2, ... L. p(i, j)
is an estimate of posteriori probability,
Prob(class i | x = c(j)), under the assumption of equally likely
class probabilities. As desired, note that

 Nc
 ∑ p(i, j) = 1 (11)
 i=1

 The following algorithm describes how this information is
used to determine the class of an arbitrary feature vector, x.
The evaluation algorithm uses a single selectable design
parameter, h.

h = attractor radius expansion factor (12)
where

0 ≤ h
Recommend: h = 1.5

 The selection and usage of parameters h will be discussed
later, but first the evaluation algorithm is presented.

KNNANN Evaluation algorithm

1. Initialize: Q = 0,
 q(i) = 0 for i = 1, 2, ... Nc

2. For j = 1, 2, ... L
 d = norm(x - c(j))
 If d ≤ h r(j)
 Then: w = 1 / (d + 0.000001)
 Q = Q + w
 For i = 1, 2, ... Nc
 q(i) = q(i) + w p(i, j)
 End of For i loop
 Else: continue
 End of For j loop
3. If Q > 0
 Then: For i = 1, 2, ... Nc
 z(i | x) = q(i) / Q
 End of For i loop
 Else: For i = 1, 2, ... Nc
 z(i | x) = 0
 End of For i loop

 If Q > 0 upon completion of these three steps, z(i | x) is
an estimate of Prob (class i | x). It is easy to show that the sum
of z(i | x) over i is one. If Q = 0, then x did not belong to the
neighborhood of any attractor. In this case, it is assumed that x
is statistically dissimilar to the training set. Therefore there is
no basis for assigning a class; the class is declared "unknown."

 Let

Imax = argmax(z(i | x)) (13)
 i

Iref = argmax(z(i | x))
 i ≠ Imax

T = a designer selectable classification threshold.

The classification rule is given by:
If z(Imax | x) ≥ T z(Iref | x), then class = Imax; otherwise the
class is considered uncertain.
 For a two-class problem (e.g., class 1 = target and
class 2 = nontarget), the classification rule is given by:
If z(1 | x) > T z(2 | x), then class = 1; otherwise class = 2.

 T can be selected to adjust the operating point for
probability of classification versus probability of false alarm.
Furthermore, if a sufficiently large set of feature vectors is
available with their associated class labels, the Receiver
Operator Characteristic curve can be estimated by varying T.
(So as not to be fooled by possible overtraining, one should use
feature vectors that were not used in the training to generate
the ROC curve.)
 Other variants of interpolation can be used in the KNN
Evaluation algorithm by simply changing the interpolation
weight, w, in step 2. For example, one could use

w = exp(-a | d / r(j) |b) (14)

for appropriate choices of parameters a > 0 and b > 0.

KNNANN design parameters

 The KNNANN training algorithm estimates a joint
histogram of the training data where each attractor represents a
volume in feature space in which one counts the number of
training samples that belong to each class. The KNNANN
counting process, which is used to size the attractor and
determine the sample probabilities associated with it, performs
two key functions: (1) it balances the training data when the
classes may have a disparate number of samples, and (2) it
sizes each attractor so that the number of samples it contains is
compatible with the size of the training set. To illustrate,
suppose one is creating a histogram from M samples where the
histogram volumes (attractors) that cover feature space can
vary in size. Assume each volume contains, on the average,
Ms samples and that Mv volumes contain all M samples. If the
volumes are disjoint, then M = Ms Mv. The question is how
many volumes Mv should one strive to have and how many
samples Ms per volume. We would like Ms to be large so that
the sample probabilities for each volume can be accurately
estimated. However, we would also like Mv to be large so that
the joint histogram has many small attractors that have
sufficient resolution to accurately approximate the continuous
joint probability density over all of feature space. A natural
way to balance Mv versus Ms is by maximizing

J(Ms, Mv) = min (α2 Mv, Ms) (15)

under the constraint that Mv Ms = M where parameter α is a
tradeoff weight. The solution is given by

Ms = α M1/2 (16)
and

Mv = (1/α) M1/2

(We are ignoring the fact the solution is, in general, not an
exact integer because it is not critical to this discussion.)
 Note that tradeoff weight, α, is the "nearest neighbor
factor" that was defined earlier in Eq 8.
 Furthermore note that Ms(M) = α M1/2 has the asymptotic
properties that

 Lim Ms(M) = ∞ (17)
M→∞

 Lim Ms(M) / M = 0
M→∞

 These properties imply that the joint histogram will
approach the true joint probability density as M approaches
infinity.
 However we must also keep in mind that the training set
may not be balanced (i.e., some classes may have more
training samples than others). We do not want the training
process to favor one class over the others simply because it has
more samples. Accordingly, each sample is weighted by

[M(class(k))]-1/2. (18)
.
 Then the radius of an attractor is given as the smallest
radius such that the sum of the weights of the samples
contained in the attractor is greater than or equal to parameter
α. This is implemented in steps 4, 5, and 6 of the KNNANN
Training algorithm. For the special case where the attractor
contains only class i, one can show that the number of samples
in the attractor is the smallest integer that is greater than or
equal to

α [M(i)]1/2. (19)

 To determine the sample probabilities within an attractor
and account for unbalanced training data, each sample is
weighted by

1 / M(i). (20)

 By using these weights in a counting procedure to
determine sample probabilities, all classes appear to have the
same number of training samples (i.e., classes appear equally
likely). This is implemented in steps 8, 9, and 10 of the
KNNANN training algorithm. To illustrate, consider the
special case where the number of samples from class i that
belongs to attractor L is P0 M(i) for all i where P0 is any
fractional constant. Then p(i, L) will equal 1/Nc for all i.
 The parameter γ(i) is used to control the amount of
attractor overlap. It also influences the number of attractors
that will be determined. See the second "if-statement" in step 9
of the KNNANN Training algorithm. Note that any of the
feature vectors, which have not been flagged in step 9, have the
potential to be selected as an attractor center. If a feature
vector belonging to class i is within radius γ(i) r(L) of the
center of attractor L, it is flagged so it cannot be selected as a
new attractor center in subsequent passes through the
algorithm. Consequently, if γ(i) = 0, then every feature vector
belonging to class i will be selected as an attractor center. For
γ(i) = 0, observe that attractors, whose centers have been
selected from class i, have the potential for large overlap
because a new attractor center is permitted to be very near an
existing attractor center. In contrast, for γ(i) = 1, observe that
attractors, whose centers have been selected from class i, have
a more limited potential to overlap because a new attractor
center must be at least a full radius away from all existing
attractor centers.
 To reduce the number of attractors that must be stored and
searched during evaluation, it is recommended to use
0.5 < γ(i) < 1 when M(i) is large. To make maximum use of
class i data when M(i) is small, it is recommended that γ(i) = 0.
 Note when γ(i) = 1 for all i, a minimal number of
attractors is generated; and when γ(i) = 0 for all i, the largest
number of attractors is generated. In practice, γ(i) is selected
by trial and error. Typically, for networks trained with 1000 to
4000 feature vectors, γ(i) is selected so that network will have
between 250 and 500 attractors. Note that training time
decreases substantially as γ(i) becomes large because more
vectors are flagged for removal as attractors are selected; this is

especially useful for large training sets. It is instructive to note
that the number of passes through the training algorithm (i.e.,
the number of times steps 3 - 11 are executed) is finite and
cannot exceed N. More specifically, if γ(i) are near 0, the
number of passes is of order N; if γ(i) are near 1, the number of
passes is of order N1/2.
 The training algorithm can be made faster by noting that
only a partial sort is required in step 5.
 Because the attractors are likely to overlap, an arbitrary
feature vector is often contained in more than one attractor.
This is beneficial because it allows one to obtain a better
estimate of the class probabilities by interpolating the sample
probabilities from each attractor. This interpolation is done in
the KNNANN Evaluation algorithm. It is a weighted average
of the attractors' sample probabilities where the weights favor
the attractors whose centers are nearest the feature vector that
is being classified.
 The design parameter h, the radius expansion factor that is
used in the KNNANN Evaluation algorithm (Eq 12), controls
which attractors to associate with the feature vector that is
being classified. If the feature vector is not contained in any
attractor, it is considered as statistically dissimilar to the
training set and, consequently, the class is declared as
unknown. However, because the design of the network was
based on a finite training set, it is statistically possible for a
new feature vector not to be contained in any attractor but near
the perimeter of some of them. The expansion factor is used to
increase an attractor's radius of influence so that it will capture
these nearby feature vectors. In addition it permits more
attractors to be involved in the interpolation process.

IV. ODFC

 The ODFC uses the same notation from Eqs 1 and 2.
However the feature vector is augmented with an additional
component, which is set to unity. Namely,

xn+1(k) = 1 (21)

 As will be obvious later, the linear coefficient that
multiplies this component acts as an offset bias and allows the
hyperplane (as observed in the original n-dimensional feature
space) to optimally shift and better align with class boundaries.
For the remaining ODFC sections, x is assumed to be the
augmented (n+1)-dimensional feature vector.
 Define a bank of coefficient vectors as

c(i, j) = the j-th coefficient vector associated (22)
 with class i
 = (n+1)-dimensional column vector

where
i = 1, 2, ... Nc and j = 1, 2, ... Nf(i) (23)
Nf (i) = number of coefficient vectors associated with
 class i

 The first n components of c(i, j) define the normal vector
of a hyperplane in the original n-dimensional feature space.
The n+1 component of c(i, j) accounts for the shift of the

hyperplane relative to the origin of the n-dimensional feature
space.
 Define the output of the filters as the projection of x along
c(i, j); namely,

s(x, c(i, j)) = c'(i, j) x (24)

where ' is the matrix-vector transpose operator.
 The training goal is to determine c(i, j) such that, on the
average, s2(x(k), c(i, j)) is large for x(k) belonging to class i
and is small for x(k) not belonging to class i for j = 1, 2, ...
Nf(i).
 Define the correlation matrix

A(i) = (1/M(i)) ∑ x(k) x'(k) (25)
 x(k)∈class i

Then
(1/M(i)) ∑ s2(x(k), c) = c' A(i) c. (26)
 x(k)∈class i

 For clarity, the indices on c(i, j) have been dropped. The
solution is found by maximizing J(c) with respect to c where

 c' A(i) c
J(c) = (27)
 c' B(i) c

and
B(i) = (1 / (Nc - 1)) ∑ A(m) (28)
 m ≠ i

 One notes that the numerator of J(c) is the sample
expectation of s2(x, c) over the training set given that x belongs
to class i. And the denominator of J(c) is the sample
expectation of s2(x, c) over the training set given that x does
not belongs to class i under the assumption of equally likely
classes. That is

 Es [s
2(x, c) | x ∈class i]

J(c) = (29)
 Es [s

2(x, c) | x ∉class i]

where Es[.] denotes the sample expectation (or sample mean).
 One recognizes J(c) as the Raleigh quotient implying the
solution is found by solving the generalized eigenvalue
problem:

A(i) v - λ B(i) v = 0 (30)

If the eigenvector v and eigenvalue λ is a solution to Eq 30,
then

 v' A(i) v Es [s
2(x, v) | x ∈class i]

λ = = (31)
 v' B(i) v Es [s

2(x, v) | x ∉class i]

This implies that c(i, 1), c(i, 2), ... c(i, Nf (i)) should be selected
to be all the eigenvectors whose eigenvalues are large relative
to 1.
 If c(i, j) is scaled as follows,

c(i, j) = v / (v' B(i) v)1/2 (32)

it is easy to show that,

Es[s
2(x, c(i, j))] = λ for x ∈ class i (33)

Es[s

2(x, c(i, j))] = 1 for x ∉ class i

Selection of eigenvectors for c(i, j)

The procedure for determining which eigenvectors to select
uses two selectable design parameters, H and K. All
eigenvectors are selected whose eigenvalues are greater than
H. However, if more than K eigenvectors have been selected,
only the eigenvectors corresponding to the K largest
eigenvalues are kept. Because A(i) and B(i) are (n+1) x (n+1)
matrices, the maximum number of eigenvectors is n+1.
Consequently Nf (i) obeys 0 ≤ Nf (i) ≤ K ≤ n+1. In our
applications the choices of H = 2.0 and K = min(5, n+1) have
performed well. If no eigenvalues are greater than H (i.e.,
Nf(i) = 0), then one selects the eigenvector corresponding to
the maximum eigenvalue (so Nf(i) will be at least 1). When the
eigenvalues are not large, the implication is that the features
are not providing good discrimination and classifier
performance is generally poor.
 Finally, the selected eigenvectors are scaled as described
above in Eq 32 and stored in c(i, j).
 The ODFC training process, described by Eqs 25 to 32, is
repeated for i = 1, 2, ... Nc.

Conditioning matrix A(i)

 If the number of class samples is sufficiently large and the
features are linearly independent, then A(i) and B(i) are real
symmetric positive definite matrices. Fast and accurate
computer routines for solving the generalized eigenvalue
problems having such matrices are readily available in many
linear algebra software packages (e.g., IMSL and MATLAB).
To increase robustness to random errors on the feature vector
and mitigate the possibility of ill-conditioning when solving
the generalized eigenvalue problem, the first n diagonal
elements of A(i) are multiplied by factor (1 + ε) prior to
generating B(i). One should try several values for ε and choose
the one that gives the best results with a test set of feature
vectors. In many of our applications the choice of ε = 0.0025
has performed well.

Summary of the ODFC Training Process

 The ODFC Training process is summarized as follows.
Initially augment each training feature vector with one
additional component and set it equal to 1.

For i = 1, 2, ...Nc

1. Compute A(i) from Eq 25.

2. As described above in subsection "Conditioning matrix
A(i),"condition the diagonal elements of A(i).

3. Calculate B(i) by Eq 28.
4. Solve for the eigenvectors and eigenvalues of Eq 30.
5. As described above in subsection "Selection of

eigenvectors for c(i, j)," choose parameters H and K and
use them to select the appropriate subset of Nf(i)
eigenvectors.

6. According to Eq 32, scale the selected eigenvectors and
save them in c(i, j) for j = 1, 2, ... Nf(i).

End of For i loop

ODFC Evaluation process

 Using c(i, j) for i = 1, 2, ... Nc and j = 1, 2, ... Nf (i), the
class of a new feature vector x is determined as follows.
Define

z(i | x) = max (| c'(i, j) x |) (34)
 j

Imax = argmax(z(i | x))
 i

Iref = argmax(z(i | x))
 i ≠ Imax

T = a designer selectable classification threshold.

 The classification rule is given by:
If z(Imax | x) ≥ T z(Iref | x), then class = Imax; otherwise the
class is considered uncertain.

 For a two-class problem (e.g., class 1 = target and
class 2 = nontarget), a classification threshold, T, can be
introduced to adjust the probability of classification relative to
the probability of false alarm. The classification rule is given
by:
If z(1 | x) > T z(2 | x), then class = 1; otherwise class = 2.

V. CONCLUSION

This paper presented detailed descriptions of the K-Nearest
Neighbor Attractor-based Neural Network (KNNANN) and the
Optimal Linear Discriminatory Filter Classifier. Both are
feature-based classifiers whose training is based on supervised
learning.

The KNNANN is a probabilistic-based neural network that
constructs a joint histogram, which approximates the joint
posteriori class probability density function. Some novel
attributes of the KNNANN are:

 (1) A training procedure that balances the size of the
attractors so that they are small enough to resolve the
underlying probability density but large enough to hold a
sufficient number of training samples to accurately estimate the
class probabilities.

(2) A compensation method for unbalanced training data
sets (i.e., data sets where the number of samples in each class
differ substantially).

(3) An interpolation method that estimates class
probabilities by combining sample probabilities of several
overlapping attractors.

The ODFC employs multiple linear classifiers that are
combined to determine the class of a feature vector.
Coefficients of the linear filters are derived by solving a
generalized eigenvalue problem.

Because the KNNANN uses hyperspheres to define class
boundaries in feature space and the ODFC uses hyperplanes,
the two classifiers are complementary and have performed well
when "anded."

The training algorithms for both classifiers are not iterative
and computationally very fast. This allows one to use the
classifiers to evaluate a large number of feature subsets taken
from a large set of candidate features and select the subset that
performs the "best" or "good enough," thereby overcoming
Bellman's well-known curse of dimensionality.

ACKNOWLEDGMENT

This work was funded by the Office of Naval Research, Dr.
Tom Swean, ONR 321OE.

REFERENCES

[1] D. F. Specht, "Probabilistic Neural Networks," Neural

Networks, Vol. 3, pp 109-118, 1990.
[2] R. Duda, P. Hart, D. Stork, Pattern Classification, John

Wiley and Sons, Inc., 2001.
[3] A. Mahalanobis, R. Muise, S. Stanfill, A. Van Nevel,

"Design and application of quadratic correlation filters for
target detection," IEEE Transaction on Aeorspace and
Electronc Systems, Volume 40, Issue 3, pp 837-850, July
2004.

[4] G. Dobeck, J. T. Cobb, "False alarm reduction by the
And-ing of multiple multivariate Gaussian classifiers,"
Proceedings of SPIE’03, Vol. 5089, 45-57, Orlando
Florida, 21-25 April 2003.

[5] G. Dobeck, "Robust score-based feature vectors for
Algorithm Fusion," Proceedings of SPIE'04, Vol. 5415,
pp. 304-314, Orlando, FL, 12-16 April 2004.

[6] G. Dobeck, "Algorithm fusion for automated sea mine
detection and classification," Proceedings of Oceans 2001,
Vol. I, pp. 130-134, Nov. 2001.

[7] G. Dobeck, "Fusing sonar images for mine detection and
classification," Proceedings of SPIE'99, Vol. 3710,
pp. 602-614, Orlando, Florida, 5-9 April 1999.

[8] J. C. Hyland, G. J. Dobeck, "Sea Mine Detection and
Classification Using Side-Looking Sonar," Proceedings of
SPIE'95, Vol. 2496, pp. 442-453, Orlando, Florida, 17-21
April 1995.

	Select a link below
	Return to main menu
	Return to previous view

	Select a link below
	Return to main menu
	Return to previous view

